Imaging Calcification in Aortic Stenosis

Dr Marc Dweck
Centre for Cardiovascular Science
University of Edinburgh
Aortic Stenosis
A Disease of the Valve and the Myocardium

The Valve
Pathophysiology of Aortic Valve Narrowing

Aortic Stenosis
Biphasic response

• **Inflammation / lipid deposition** = Disease Initiation
 – Markers associated with the incidence of AS
 – Atherosclerotic risk factors
 – Lp (a) SNP on genetic analysis

• **Calcification** = Disease Propagation
 – Markers of calcification emerge as the strongest predicts of disease progression and clinical outcomes
 – Less closely associated with inflammation / lipid- failure of the statin trials
Modalities for Imaging Valvular Calcium

1) Echocardiography

2) Computed Tomography

3) Positron Emission Tomography
Echocardiography
Echocardiographic Aortic Valve Calcium Score

1 = NORMAL
No calcium

2 = MILD
Isolated small spots

3 = MODERATE
Multiple bigger spots

4 = SEVERE
Extensive all cusps

Rosenhek NEJM 2000
Predicts Progression & Adverse Clinical Outcomes

• Predicts faster rate of progression in patients with mild / moderate aortic stenosis
 Rosenhek Eur Heart J 2004

• Severe calcification independent predictor of AVR / Death
 Rosenhek NEJM 2000
 Cioffi Echocardiography 2013

INCREMENTAL PREDICTIVE AND PROGNOSTIC DATA OVER AND ABOVE HAEMODYNAMIC ECHO PARAMETERS
COMPUTED TOMOGRAPHY
Computed Tomography

- Aortic Valve Calcium Score
- Same approach as calcium scoring the coronaries
 - ECG- gated, non-gated scan (120mv, 50mA)
 - Axial scans
 - Expressed as Agatston units (radiodensity + volume)
Initial Studies

- Correlates with echo parameters ($r=0.54$) but not perfect
 Cowell J Clin Radiol 2004

- In 262 patients followed up for 3.8 ± 0.9 years CT calcium score only predictor of aortic stenosis progression on multivariate analysis
 Messika-Zeitoun Arterioscl Thromb Vasc Biol 2007
Gender Differences

- Correlations between CT calcium score and echo parameters improve when examining males and females independently.

- Women need less AV calcium than men to develop the same degree of haemodynamic obstruction ($P<0.0001$).

- Even after adjustment for their smaller body surface area or aortic annular area (both $P<0.0001$).
Optimal Cut Off

- 460 patients with moderate or severe AS and concordant echo measures of severity

- Aimed to establish optimal cut off in AV calcium score that defines severe AS

- Higher in males than females
 - AVC 2,065 AU in men and 1,275 AU in women
Does it Predict Clinical Outcomes?

- 794 patients from 3 centres

- Severe absolute AVC defined as
 - ≥1,274 AU in women
 - ≥2,065 AU in men

- Predicted overall mortality (adjusted HR: 1.71; 95% CI: 1.12 to 2.62; p = 0.01).
Should We Be Using It Now?

- Patients with discrepant echocardiographic assessments of aortic stenosis
 - Only a minority explained by low flow status

- Up to 1/3rd of patients with moderate/severe disease

- Can provide useful discrimination as to the true severity of the aortic stenosis
PET/CT
Positron Emission Tomography
Computed Tomography
PET Tracers Used

Inflammation: 18F-Fluorodeoxyglucose (18F-FDG)
- Uptake correlates with macrophage burden

Calcification: 18F-Sodium Fluoride (18F-NaF)
- PET bone tracer for 30 years
- Adsorbs to hydroxyapatite
- Detects regions of newly developing microcalcification
18F-NaF Activity: Aortic Valve

Field of View: 780mm
512 matrix size
Voxel size: $1.5 \times 1.5 \times 3.0$mm
What Is 18F-Fluoride Telling us that is Different to Calcium Scoring?

Correlation between 18NaF and CT calcium score
R=0.80 p<0.001

Dweck et al Circulation 2012
What Is 18F-Fluoride Telling us that is Different to Calcium Scoring?
PET/CT
Different Distribution

Moderate
18F-NaF Correlates with Histological Markers of Calcification Activity

Alkaline Phosphatase

% Surface area of the valve stained

Valve 18F-NaF Activity (Mean TBR)

$\text{r}=0.65$

$p=0.04$

Dweck & Jenkins Circulation CVS Imaging 2014
18F-NaF Predicts Aortic Stenosis Disease Progression at 1 year

Good correlation between baseline PET activity and change in calcium score (CT) $r=0.66$, $p<0.001$

18F-FDG was not predictive of disease progression: $r=0.14$, $p=0.55$

Dweck & Jenkins Circulation CVS Imaging 2014
Acknowledgements

University of Edinburgh
Prof David Newby
Dr Nicholas Boon
Dr Calvin Chin
Dr Timothy Cartilidge
Dr Nicholas Mills
Dr Tania Pawade
Dr William Jenkins
Dr Alex Vesey

University of Cambridge
Dr James Rudd
Dr Agnese Irkle
Dr Anthony Davenport

Royal Brompton Hospital
Dr Sanjay Prasad
Dr Vassillou Vasilius

Bichat Hospital, Paris
Dr David Messika-Zeitoun
Prof Alex Vahanian
Dr Dominique Le Guludec

The British Heart Foundation

This work was supported by the following BHF grants

- Clinical Research Training Fellowship (FS/10/026)
- Extension to Clinical Research Training Fellowship (FS-10/026)
- Clinical Research Training Fellowship (FS/12/84/29814)
- British Heart Foundation Project Grant (PG/12/8/29371)
- British Heart Foundation Centre of Research Excellence Award.
- British Heart Foundation Clinical Lectureship

Cedars Sinai Hospital, LA
Prof Daniel Berman
Prof James Min

Mount Sinai Hospital, NY
Prof Zahi Fayad
Prof Valentin Fuster